3D Bioplotter Research Papers

Displaying all papers by X. Duan (5 results)

Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering in vitro

Biofabrication 2023 Volume 15, Issue 1, Article 015022

Tissue engineering offers a great potential in regenerative dentistry and to this end, three dimensional (3D) bioprinting has been emerging nowadays to enable the incorporation of living cells into the biomaterials (such a mixture is referred as a bioink in the literature) to create scaffolds. However, the bioinks available for scaffold bioprinting are limited, particularly for dental tissue engineering, due to the complicated, yet compromised, printability, mechanical and biological properties simultaneously imposed on the bioinks. This paper presents our study on the development of a novel bioink from carboxymethyl chitosan (CMC) and alginate (Alg) for bioprinting scaffolds for enamel tissue…

Regional specific tunable meniscus decellularized extracellular matrix (MdECM) reinforced bioink promotes anistropic meniscus regeneration

Chemical Engineering Journal 2023 Volume 473, Article 145209

The healing of meniscus injuries poses a significant challenge, as prolonged failure to heal can lead to osteoarthritis, which presents a therapeutic dilemma in the field of sports medicine. Decellularized extracellular matrix (MdECM) derived from natural meniscus, and the incorporated growth factors have been used for potential fibrochondrocyte induction and meniscus regeneration. However, homogeneous MdECM is difficult to achieve region-specific biomimetic microenvironment for tissue regeneration. In this study, we successfully prepared a region-specific MdECM, which were then mixed with an ultraviolet responsible Gelatin Methacryloyl (GelMA)/hyaluronic acid Methacryloy (HAMA) hydrogel incorporated with bioactive factors, faciliatated a functional region-specific bioink. The 3D…

Low-density tissue scaffold imaging by synchrotron radiation propagation-based imaging computed tomography with helical acquisition mode

Journal of Synchrotron Radiation 2023 Volume 30, Pages 417-429

Visualization of low-density tissue scaffolds made from hydro­gels is important yet challenging in tissue engineering and regenerative medicine (TERM). For this, synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT) has great potential, but is limited due to the ring artifacts commonly observed in SR-PBI-CT images. To address this issue, this study focuses on the integration of SR-PBI-CT and helical acquisition mode (i.e. SR-PBI-HCT) to visualize hydro­gel scaffolds. The influence of key imaging parameters on the image quality of hydro­gel scaffolds was investigated, including the helical pitch (p), photon energy (E) and the number of acquisition projections per rotation/revolution (Np), and, on…

Stepwise Cross-Linking of Fibroin and Hyaluronic for 3D Printing Flexible Scaffolds with Tunable Mechanical Properties

ACS Biomaterials Science & Engineering 2021 Volue 7, Issue 3, Pages 916-925

The development of 3D printing techniques has provided a promising platform to study tissue engineering and mechanobiology; however, the pursuit of printability limits the possibility of tailoring scaffolds’ mechanical properties. The brittleness of those scaffolds also hinders potential clinical application. To overcome these drawbacks, a double-network ink composed of only natural biomaterials is developed. A shear-thinning hydrogel made of silk fibroin (SF) and methacrylated hyaluronic acid (MAHA) presents a high mechanical modulus with a low concentration of macromers. The physical cross-linking due to protein folding further increases the strength of the scaffolds. The proposed SF/MAHA scaffold exhibits a storage modulus…

Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration

Theranostics 2020 Volume 10, Issue 11, Pages 5090-5106

Meniscus deficiency, the most common and refractory disease in human knee joints, often progresses to osteoarthritis (OA) due to abnormal biomechanical distribution and articular cartilage abrasion. However, due to its anisotropic spatial architecture, complex biomechanical microenvironment, and limited vascularity, meniscus repair remains a challenge for clinicians and researchers worldwide. In this study, we developed a 3D printing-based biomimetic and composite tissue-engineered meniscus scaffold consisting of polycaprolactone (PCL)/silk fibroin (SF) with extraordinary biomechanical properties and biocompatibility. We hypothesized that the meticulously tailored composite scaffold could enhance meniscus regeneration and cartilage protection. Methods: The physical property of the scaffold was characterized by…